Как из этилена получить ацетальдегид

Содержание

Фармацевтика, медицина, биология

Этаналь

Этаналь (уксусный альдегид) — второй член гомологического ряда алифатических альдегидов. Бесцветная жидкость с резким удушливым запахом, при разбавлении водой приобретает фруктового запаха. Промежуточный продукт обмена веществ в живом организме. Применяется для производства ацетатов целлюлозы, уксусной кислоты, бутанола и др.

Строение

В этаналя, как и у любого другого альдегида, три атома соединены с центральным тригонально атомом (а именно: атом кислорода, атом водорода и атом углерода). Все они лежат в одной плоскости с этим тригонально атомом. Все углы связей тригонального атома с этими атомами близки к 120 °.

В карбонильной группе есть очень большая разница в электроотрицательности между атомами углерода и кислорода. Это отражается в большом дипольном моменте уксусного альдегида. Электроны связи распределены неравномерно, поэтому молекула этаналя сильно полярная. Для качественного описания природы связи в карбонильной группе обычно используют представление о двойной связь, содержащая σ- и π-компоненты с двумя парами несвязанных (n) электронов у атома кислорода. Принято, что тригонально атом углерода находится в состоянии sp 2 гибридизация и образует σ-связь с водородом и другим атомом углерода.

Физические свойства

Этаналь, как и все альдегиды, не способен образовывать водородных связей, поэтому его температура кипения составляет лишь 20,16 ° C. При обычных условиях — это бесцветная жидкость с резким удушливым запахом, при разбавлении водой приобретает фруктового запаха. Хорошо растворяется в воде, спирте, эфире.

Получение

Процесс Вакера

Главным промышленным способом получения уксусного альдегида является процесс Вакера. Он заключается в окислении этилена, который получают при крекинга углеводородов. Этот способ имеет гораздо большее значение, чем окисления, каталитическая дегидрогенизация этанола или гидратация ацетилена. В процессе Вакера этилен окисляют в водном растворе, хлорид меди (II) и хлорид палладия (II). В одностадийном варианте катализатор регенерируют кислородом в условиях непрерывного синтеза, в двухстадийном варианте катализатор регенерируют воздухом в отдельном реакторе. Реакция катализируется палладием.

С дигалогенопохидних

В результате гидролиза дигалогенопохидних с двумя атомами галогена при одном атоме углерода образуются двухатомные спирты, содержащие две гидроксильные группы также при одном атоме углерода. Такие диолы крайне неустойчивы и легко отщепляют молекулу воды. Таким образом с 1,1-дихлорэтана можно получить этаналь.

С этанола

При окислении этанола кислородом воздуха при температуре 300-500 ° С при наличии катализаторов, а также такими окислителями, как хромовая смесь, оксид хрома (VI), марганца (IV) оксид и др., Образуется уксусный альдегид.

Данный процесс довольно сложно остановить на стадии образования альдегида и он может длиться до получения уксусной кислоты.

С этанола этаналь можно получить и дегидрогенизации. Для этого испарения спирта необходимо пропустить над катализаторами (цинк, медь) при высоких температурах.

С ацетилена

Этаналь можно получить гидратацией ацетилена. В качестве катализаторов в процессе применяются соли ртути.

Химические свойства

Нуклеофильное присоединение

Взаимодействие с цианидами металлов

При взаимодействии этаналя с солями цианидной кислоты образуются гидроксинитрилы. Сама синильная кислота малодиссоциированных. Поэтому реакцию проводят в щелочной среде, где образуется цианид-ион, который является активной нуклеофильного частью.

Реакция является весьма важной в органической химии. Во-первых, она позволяет продлить карбоновый цепь исходного соединения на один атом углерода. Во-вторых, продукт реакции — 2-гидроксипропанонитрил служит исходным продуктом для синтеза соответствующей гидроксикарбоновои кислоты.

Взаимодействие с водой

Уксусный альдегид вступает в обратимую реакцию гидратации, образуя соответствующий гидрат.

Этаналь в водном растворе гидратированный на 51%.

Взаимодействие со спиртами

Спирты, как и вода, обратимо присоединяются к этаналя с образованием пивацеталей. В спиртовых растворах пивацетали находятся в равновесии с уксусным альдегидом. Так, в этанольная растворе этаналя содержится около 30% пивацеталю (1-етоксиетанолу) (в расчете на альдегид).

При взаимодействий со второй молекулой спирта в условиях кислотного катализа пивацетали превращаются в ацетали.

Взаимодействие с аминами

На первой стадии реакции происходит нуклеофильное присоединение амина по двойной связи карбонильной группы. Первичным продуктом присоединения является биполярный ион, который стабилизируется в результате внутримолекулярного переноса протона от атома азота к атому кислорода, превращаясь в аминоспирт. Однако реакция не останавливается на этой стадии, ведь соединения, содержащие две электроноакцепторные группы при одном атоме углерода, неустойчивы и стремятся к стабилизации путем отщепления одной из групп в виде нейтральной термодинамически стабильной молекулы. В данном случае происходит отщепление молекулы воды от молекулы аминоспирта и образуется имин (основа Шиффа).

Подобно взаимодействия с первичными аминами проходят реакции этаналя с такими производными аммиака, как гидроксиламин, гидразин, фенилгидразин C 6 H 5 NHNH 2 и др. Образующиеся производные уксусного альдегида — оксимы, гидразоны, фенилгидразоны — обычно устойчивы кристаллическими веществами с четкими температурами плавления.

Восстановление

Этаналь восстанавливается до этанола. Одним из эффективных восстановителей является алюмогидрида лития LiAlH 4. Он играет роль поставщика гидрид-ионов H -, которые являются нуклеофильными частицами и присоединяются по двойной связи. Для преобразования образованного сначала алкоксид-иона в спирт после окончания восстановления в реакционную среду добавляют воду.

В промышленности этаналь превращают в этанол в результате каталитической гидрогенизации. Реакцию проводят, пропуская пары альдегида в смеси с водородом над никелевым или палладиевого катализатора.

Альдольно-кротоновая конденсация

В результате взаимодействия в щелочной среде двух молекул этаналя образуется 3-гидроксибутаналь.

Поскольку продукт реакции содержит в молекуле гидроксильную и альдегидную группы, его назвали альдоль (от слов альдегид и алкоголь), а сама реакция конденсации оксосоединений в щелочной среде получила название альдольной конденсации. Эта реакция имеет большое значение в органическом синтезе, поскольку позволяет синтезировать различные гидроксикарбонильни соединения. Альдольно конденсацию можно проводить в смешанном варианте, с использованием различных карбонильных соединений.

Читайте также:  Курение и кормление грудничка комаровский

Часто альдольная конденсация сопровождается отщеплением воды и образованием α, β-ненасыщенного карбонильной соединения. В таком случае реакция называется кротонов конденсацией. Такое происходит часто, когда реакцию проводят при повышенной температуре.

Реакции окисления

Реакция «серебряного зеркала»

Одной из качественных реакций для определения альдегидной группы реакция «серебряного зеркала» — окисление альдегида аргентум (I) оксидом. Оксид серебра всегда готовят непосредственно перед опытом, добавляя к раствору аргентум (I) нитрата раствор гидроксида щелочного металла. В растворе аммиака аргентум (I) оксид образует комплексное соединение под названием гидроксид диаминсрибла или реактив Толленса. При действии этого соединения на этаналь происходит окислительно-восстановительная реакция. Уксусный альдегид окисляется до уксусной кислоты, а катион Аргентума восстанавливается в металлическое серебро, которое дает блестящий налет на стенках пробирки — «серебряное зеркало».

Окисления гидроксидом меди

Еще одна качественная реакция на альдегиды заключается в их окислении гидроксида меди (II). При окислении альдегида меди (II) гидроксид, что имеет светло-голубой цвет, восстанавливается до гидроксид меди (I) желтого цвета. Этот процесс проходит при комнатной температуре. Если подогреть исследовательский раствор, то меди (I) гидроксид желтого цвета превращается в оксид меди (I) красного цвета.

Галогенирования

Наличие в молекуле этаналя електроноакцепторний оксогруппы является причиной повышенной реакционной способности атомов водорода, находящихся у атомов углерода в α-положении. Они способны замещаться на атомы галогена.

Полимеризация

Уксусный альдегид подобно формальдегида способен полимеризоваться при наличии следов кислоты. При полимеризации трех молекул этаналя образуется паральдегид — жидкость с температурой кипения 124,5 ° С. При нагревании при наличии кислот он деполимеризуется с образованием исходного уксусного альдегида.

Взаимодействие с аммиаком

Уксусный альдегид реагирует с безводным аммиаком в эфире, давая тригидрат гексагидротриазину, который после дегидратации над серной кислотой образует 2,4,6-триметилгексагидро-1,3,5-триазин, азотный аналог «паральдегида».

В промышленности этаналь окисляют до уксусной кислоты и пероцтовои кислоты воздухом. Для получения уксусной кислоты окисления обычно проводят в испарениях и при повышенной температуре. Для получения пероцтовои кислоты реакцию проводят при 0 ° С или при более низкой температуре в растворителе. Как промежуточный продукт образуется 1-гидроксиетилперацетат, который разлагается с образованием пероцтовои кислоты и уксусного альдегида. Последний возвращают в цикл.

Применение

Этаналь применяют в промышленности для производства ацетатов целлюлозы, уксусной и пероцтовои кислот, уксусного ангидрида, этилацетата, глиоксаля, 2-етилгексанолу, алкиламинов, бутанола, пентаэритрита, алкилпиридинив, 1,3-бутиленгликоль, хлорала. Также используется как восстановитель в производстве зеркал.

Мировое производство в 1982 году составило 2 млн т / год (без СССР).

Физиологическое действие

Животные

Для белых мышей при 2-часовой экспозиции ЛК 50 = 21,8 мг / л, при введении в желудок ЛД 50 = 1232 мг / кг. Основные симптомы отравления — расстройство дыхания, раздражение слизистых оболочек. Вдыхание этаналя концентрацией 0,5 мг / л в течение семи часов вызывает заметное раздражение слизистых оболочек у кошек. При 2 мг / л — сильное раздражение, а 20 мг / л через 1-2 часа вызывает смерть. Вскрытие показывает отек и воспаление легких. Крысы и морские свинки переносили введение дозы 100 мг / кг в течение 6 месяцев. При этом отмечалось нарушение условнорефлекторной деятельности, повышение артериального давления. Те же изменения вызвала доза 10 мг / кг через 2-3 месяца.

Человек

Порог восприятия запаха составляет 0,0001 мг / л, а уже при 0,004 мг / л ощущается резкий запах. Кроме легкого раздражения слизистых оболочек от 0,1-0,4 мг / л при хроническом воздействии этаналя других патологических изменений не отмечалось. При больших концентрациях наблюдается учащение пульса, ночное потоотделение. При очень больших — удушье, резкий кашель, головные боли, бронхит, воспаление легких. Возможно привыкание к небольших концентраций.

Попадание в организм и преобразования

Задерживается в дыхательных путях кролика в среднем на 60%, около 25% абсорбируется в верхних дыхательных путях. В организме окисляется до уксусной кислоты, которая вступает в нормальный обмен и сгорает в и. Скорость метаболизма большая и кроликов составляет 7-10 мг / мин .. Промежуточным продуктом окисления является ацетон.

Образование ацетальдегида при взаимодействии этилена с водным раствором хлористого палладия наблюдал Филлипс ещё в 1894 г. Образующийся в безводной среде комплекс этилена с хлористым палладием был описан Карашем в 1938 г. При взаимодействии палладиевого комплекса с водой происходит окисление активированного олефина с образованием ацетальдегида, выделением палладия и хлорида водорода. [6, с.302]

Непрерывный процесс получения ацетальдегида, в котором восстановление до металлического Pd совмещается с непрерывным его окислением кислородом воздуха, был предложен в 1959 г. Я. К. Сыркиным, И.И. Моисеевыми, М.Н. Варгафтиком. Этот процесс может протекать в одну стадию (в одном аппарате происходит как окисление этилена, так и выделяющегося палладия) или в две стадии: окисление (карбонилирование) олефина через стадию образования активного комплекса и восстановление Pd протекает в одном аппарате, а окисление металлического Pd — в другом:

CH2=CH2 +PdCl2 + H2O CH3CHO + Pd + 2HCl

Pd + 2HCl + 0,5O2 PdCl2 + H2O

В первом (одностадийном) варианте условия процесса и соотношение реагентов должны быть такими, чтобы скорости окисления этилена и Pd были одинаковыми (или последняя выше). Вместе с тем скорость второй реакции значительно ниже, чем первой, поэтому активность катализатора в таком варианте процесса быстро падает.

Для повышения скорости окисления Pd были предложены промоторы (это главное достижение в промышленной реализации данного процесса) — соли меди или железа в среде хлороводородной кислоты, играющие роль переносчиков кислорода, окисляя палладий, медь или железо, восстанавливаются по реакциям:

Pd + 2HCl + 0,5O2 PdCl2 + H2O

Cu2Cl2 + 2HCl + 0,5O2 2CuCl2 + H2O

или Pd + 2FeCl3 PdCl2 + 2FeCl2

2FeCl2 + 2HCl + 0,5O2 2FeCl3 + H2O

Соли Cu2Cl2 и FeCl2 легко окисляются кислородом воздуха, при этом металл переходит в свое исходное высшее валентное состояние. Следовательно, совмещение этих реакций создает предпосылки для осуществления в промышленном масштабе получения ацетальдегида прямым окислением этилена молекулярным кислородом.[3, с. 455]

Читайте также:  Амоксиклав с алкоголем можно ли

При этом, если процесс осуществляется в одном аппарате, то во избежание разбавления непрореагировавшего этилена окисление необходимо проводить чистым кислородом. Избыток же этилена вводится как с целью быстрого вывода ацетальдегида из зоны реакции, так и для создания соотношения компонентов за пределами взрывоопасных концентраций. В случае двухстадийного процесса (когда реакции получения ацетальдегида и окисления Pd проходят в одном аппарате, а окисление Сu2С12 или FeCl2 — в другом) можно использовать кислород воздуха, так как подача этилена и воздуха разделена.

Суммарная реакция образования ацетальдегида сопровождается выделением значительного количества тепла:

Скорость отдельных реакций и, соответственно, скорость образования побочных продуктов зависит от условий проведения процесса. На скорость суммарной реакции, селективность процесса и выход ацетальдегида существенно влияет состав катализаторного раствора (содержание PdCl2, CuCl2 и FeCl2), кислотность среды, давление, температура, соотношение этилена и окисляющего агента.

Соотношение между общим суммарным содержанием металлов окислительно-восстановительной системы (Сu, Fe или смеси) и Pd должно быть не меньше 15:1. На практике используется соотношение (25 :1)-(50:1). Такой избыток меди или железа обусловливается высокой стоимостью Pd.

Конверсия олефина зависит также от мольного соотношения в катализаторе меди (железа) и галогена; оно поддерживается в узком диапазоне (1:1,4-1:1,8). Поэтому добавляемый в ходе процесса галоген в виде хлорида или этилхлорида должен дозироваться достаточно точно, так как при соотношении меньшем, чем 1:1, снижается конверсия этилена, а при соотношении 1;2 и выше реакция замедляется. В этом случае добавляют ацетат меди [3, с. 457].

Процесс следует проводить в кислой (рН=0,8-3,0) или нейтральной среде (рН= 6,0-7,5), так как при повышении рН из катализаторного раствора будет выпадать хлорид меди (I), что приводит к снижению выхода ацетальдегида и забивки отверстий газораспределительного устройства. Растворимость хлорида Сu(I) можно повысить добавлением в катализаторный раствор муравьиной, уксусной, а лучше — трихлоруксусной кислоты. Однако их следует добавлять в незначительном количестве (особенно уксусную кислоту), так как карбоновые кислоты образуют с Сu малоактивные соли. Кроме того, уксусная кислота растворяет продукты синтеза, что приводит к образованию побочных хлорированных продуктов.

Растворимость солей в воде ограничена, поэтому образуются разбавленные растворы катализатора, что приводит к его низкой удельной производительности. В связи с этим выгоднее работать с катализатором, находящимся в виде суспензии в воде или в разбавленной уксусной кислоте (шламовый катализатор). Применение шламового катализатора позволяет сочетать высокую концентрацию катализатора с хорошим отводом тепла; образовывать стабильную пену, что в свою очередь приводит к хорошему диспергированию газа.

В качестве сырья можно использовать как концентрированный этилен, так и этан-этиленовую фракцию. Наличие малых количеств водорода, оксида и диоксида углерода, предельных углеводородов не мешает протеканию процесса. Содержание непредельных углеводородов и серы должно быть незначительным (ацетилена

ацетальдегид, ацетальдегид + метанол

Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Ацетальдеги́д (у́ксусный альдегид, этана́ль, метилформальдегид) — органическое соединение класса альдегидов с химической формулой CH3-CHO. Это один из наиболее важных альдегидов, широко встречающийся в природе и производящийся в больших количествах индустриально. Ацетальдегид встречается в кофе, в спелых фруктах, хлебе, и синтезируется растениями как результат их метаболизма. Также производится окислением этанола.

Содержание

  • 1 Физические свойства
  • 2 Получение
  • 3 Реакционная способность
  • 3.1 Реакция конденсации
  • 3.2 Производные ацеталя
  • 4 Применение
  • 5 Биохимия
    • 5.1 Табачная зависимость
    • 5.2 Болезнь Альцгеймера
    • 5.3 Проблема алкоголя
    • 5.4 Канцероген
    • 5.5 Безопасность
      • 5.5.1 Санитарно-гигиенические рекомендации
      • 5.5.2 Применение СИЗОД
      • 5.6 Врожденная непереносимость алкоголя
      • 6 Примечания
      • Физические свойства

        Вещество представляет собой бесцветную жидкость с резким запахом, хорошо растворяется в воде, спирте, эфире. Из-за очень низкой температуры кипения (20,2 °C) хранят и перевозят ацетальдегид в виде тримера — паральдегида, из которого он может быть получен нагреванием с минеральными кислотами (обычно серной).

        Получение

        В 2003 глобальное производство было около миллиона тонн в год. Основной способ получения — окисление этилена (процесс Вакера):

        В качестве окислителя в процессе Вакера используется хлорид палладия, регенерирующийся окислением хлоридом меди в присутствии кислорода воздуха:

        Также получают уксусный альдегид гидратацией ацетилена в присутствии солей ртути (реакция Кучерова), с образованием енола, который изомеризуется в альдегид:

        Этот метод раньше доминировал до появления процесса Вакера окислением или дегидрированием этилового спирта, на медном или серебряном катализаторе.

        Реакционная способность

        По своим химическим свойствам уксусный альдегид является типичным алифатическим альдегидом, и для него характерны реакции этого класса соединений. Его реакционная способность определяется двумя факторами: активностью карбонила альдегидной группы и подвижностью атомов водорода метильной группы, вследствие индуктивного эффекта карбонила.

        Подобно другим карбонильным соединениям с атомами водорода у α-углеродного атома, ацетальдегид таутомеризируется, образуя енол — виниловый спирт, равновесие почти полностью смещено в сторону альдегидной формы (константа равновесия — только 6·10−5 при комнатной температуре):

        Реакция конденсации

        Из-за небольших размеров молекулы и доступности в виде безводного мономера (в отличие от формальдегида) ацетальдегид является широко распространённым электрофильным агентом в органическом синтезе. Что касается реакций конденсации, альдегид прохирален. Он используется, в основном, как источник синтона «CH3C+H(OH)» в альдольной и соответствующих реакциях конденсации. Реактив Гриньяра и литий-органические соединения реагируют с MeCHO, образуя производные гидроксиэтила. В одной из реакций конденсации, три эквивалента формальдегида присоединяются, а один восстанавливает образующийся альдегид, образуя из MeCHO пентаэритрит (C(CH2OH)4.)

        В реакции Штрекера ацетальдегид конденсируется с цианидом и аммиаком, образуя после гидролиза аминокислоту — аланин. Ацетальдегид способен конденсироваться с аминами образуя имины, так как конденсация циклогексиламина даёт N-этилиденциклогексиламин. Эти имины могут быть использованы для прямой последующей реакции, таких, как альдольная конденсация.

        Ацетальдегид также — важный строительный блок для синтезов гетероциклических соединений. Выдающийся пример — конверсия под действием аммиака до 5-этил-2-метилпиридина («альдегид-коллидин»)

        Реакция альдольной конденсации обусловлена подвижностью водорода в альфа-положении в радикале и осуществляется в присутствии разбавленных щелочей. Ее можно рассматривать как реакцию нуклеофильного присоединения одной молекулы альдегида к другой:

        Читайте также:  Химическая формула спирта питьевого

        CH3-CH2-CH=O + CH3-CH2-CH=O → CH3-CH2-CH(OH)-CH(CH3)-CH=O +(OH)- Продукт- 2-метил-3-гидроксипентаналь.

        Производные ацеталя

        Три молекулы ацетальдегида конденсируются, образуя «паральдегид» — циклический тример, содержащий одиночные С-О связи. Конденсация четырёх молекул даёт циклическое соединение, называемое метальдегид.

        Ацетальдегид образует стабильные ацетали при реакции с этанолом в условиях дегидратации. Продукт CH3CH(OCH2CH3)2 называется «ацеталь», хотя термин используется для описания более широкой группы соединений с общей формулой RCH(OR’)2.

        Применение

        Применяют уксусный альдегид для получения уксусной кислоты, бутадиена, некоторых органических веществ, альдегидных полимеров.

        Традиционно ацетальдегид, в основном, использовался в качестве прекурсора к уксусной кислоте. Такое применение было отвергнуто ввиду того, что уксусная кислота более эффективно производится из метанола с помощью процессов Монсанто и Катива. В терминах реакции конденсации, ацетальдегид — важный прекурсор к пиридиновым производным, пентаэритролу и кротональдегиду. Мочевина и ацетальдегид конденсируются, образуя смолы. Уксусный ангидрид реагирует с ацетальдегидом, давая этилидендиацетат, из которого получают винилацетат — мономер поливинилацетата.

        Биохимия

        В печени энзим алкогольдегидрогеназа окисляет этанол в ацетальдегид, который затем окисляется в безопасную уксусную кислоту посредством ацетальдегиддегидрогеназы. Эти две реакции окисления связаны с восстановлением NAD+ в NADH. В мозгу алкогольдегидрогеназа не играет особой роли в окислении этанола в ацетальдегид, это делает энзим каталаза. Конечные шаги алкогольной ферментации в бактериях, растениях и дрожжах включают конверсию пирувата в ацетальдегид под действием пируват декарбоксилаза, после чего — конверсию ацетальдегида в этанол. Последняя реакция снова катализируется алкогольдегидрогеназой, но уже в обратном направлении.

        Табачная зависимость

        Ацетальдегид — значительная часть дыма табака. Была продемонстрирована синергическая связь с никотином, увеличивающая появление зависимости, особенно у молодёжи.

        Болезнь Альцгеймера

        Люди, у которых отсутствует генетический фактор конверсии ацетальдегида в уксусную кислоту, могут иметь большой риск предрасположенности к болезни Альцгеймера. «Эти результаты указывают, что отсутствие ALDH2 — это фактор риска для поздно возникающей болезни Альцгеймера.»

        Проблема алкоголя

        Ацетальдегид, полученный из поглощённого этанола, связывает ферменты, образуя аддукты, связанные с заболеваниями органов. Лекарство дисульфирам (Antabuse) предотвращает окисление ацетальдегида до уксусной кислоты. Это даёт неприятные ощущения при принятии алкоголя. Antabuse используется в случае, когда алкоголик сам хочет излечиться.

        Канцероген

        Ацетальдегид предположительно является канцерогеном для человека. «Существует достаточно доказательств канцерогенности ацетальдегида (основного метаболита этанола) в экспериментах на животных», кроме того, ацетальдегид повреждает ДНК и вызывает несоразмерное с общей массой тела развитие мускулов, связанное с нарушением белкового равновесия организма. В результате исследования 818 алкоголиков ученые пришли к выводу, что у тех пациентов, которые подвергались действию ацетальдегида в большей степени, присутствует дефект в гене фермента алкогольдегидрогеназы. Поэтому такие пациенты подвержены большему риску развития рака верхней части ЖКТ и печени.

        Безопасность

        Ацетальдегид токсичен при действии на кожу, ирритант и, возможно, канцероген. Он также является загрязнителем воздуха при горении, курении, в автомобильных выхлопах. Кроме того, этаналь образуется при термической обработке полимеров и пластиков.

        При длительном контакте с воздухом могут образоваться перекиси, и произойти взрыв, который может разрушить ёмкость

        Санитарно-гигиенические рекомендации

        • Кожа: Использование адекватной защитной одежды для предотвращения контакта с кожей.
        • Глаза: Использование адекватных СИЗ глаз
        • Переодевание: При намокании (из-за пожароопасности)
        • Рекомендации: Установить фонтанчики для промывки глаз, оборудовать места для быстрого переодевания

        Применение СИЗОД

        При превышении ПДК следует использовать изолирующие СИЗОД с постоянным избыточным давлением под полнолицевой маской (подача воздуха по потребности под давлением и т.п.). При использовании шланговых СИЗОД они должны быть укомплектованы вспомогательным автономным дыхательным аппаратом с постоянным избыточным давлением под маской и сроком службы, достаточным для покидания опасного места при нарушении подачи воздуха по шлангу.

        Для эвакуации могут использоваться фильтрующие СИЗОД с полнолицевой маской и фильтрами для защиты от паров органических соединений, или изолирующий самоспасатель.

        Врожденная непереносимость алкоголя

        Одним из механизмов врожденной непереносимости алкоголя является накопление ацетальдегида.

        Примечания

        1. 12 en:Wacker process
        2. March, J. «Organic Chemistry: Reactions, Mechanisms, and Structures» J. Wiley, New York: 1992. ISBN 0-471-58148-8.
        3. Sowin, T. J.; Melcher, L. M. «Acetaldehyde» in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI:10.1002/047084289
        4. en:Strecker amino ac >
          Альдегиды Предельные Формальдегид · Ацетальдегид · Хлораль · Пропаналь · Бутаналь · Нонаналь · Деканаль · Додеканаль · Глиоксаль · Малондиальдегид Непредельные Акролеин · Кротоновый альдегид · Мирценаль · Цитраль · Цитронеллаль Ароматические Бензальдегид · Салициловый альдегид · Коричный альдегид · Анисовый альдегид · Ванилин · Этилванилин · Гелиотропин Гетероциклические Фурфурол · Пиридоксаль

        ацетальдегид, ацетальдегид + метанол, ацетальдегид формула, ацетальдегиддегидрогеназа, ацетальдегидрогеназа

        Ацетальдегид Информацию О

        Как из этилена получить ацетальдегид

        Ацетальдегид Комментарии

        Как из этилена получить ацетальдегид

        Ацетальдегид beatiful post thanks!

        Ацетальдегид
        Ацетальдегид
        Ацетальдегид Вы просматриваете субъект

        There are excerpts from wikipedia on this article and video

        Случайные Статьи

        Как из этилена получить ацетальдегид

        Громов, Евгений Иванович

        Как из этилена получить ацетальдегид

        Как из этилена получить ацетальдегид

        Пайдейя

        Как из этилена получить ацетальдегид

        Каделл ап Грифид

        Как из этилена получить ацетальдегид Как из этилена получить ацетальдегид

        поисковая система

        Наш сайт имеет систему в функции поисковой системы. Выше: "что вы искали?"вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте. На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках.
        Очень скоро в систему будут добавлены новые языки. Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.

        Как из этилена получить ацетальдегид

        Содержание

        Фармацевтика, медицина, биология

        Этаналь

        Этаналь (уксусный альдегид) — второй член гомологического ряда алифатических альдегидов. Бесцветная жидкость с резким удушливым запахом, при разбавлении водой приобретает фруктового запаха. Промежуточный продукт обмена веществ в живом организме. Применяется для производства ацетатов целлюлозы, уксусной кислоты, бутанола и др.

        Строение

        В этаналя, как и у любого другого альдегида, три атома соединены с центральным тригонально атомом (а именно: атом кислорода, атом водорода и атом углерода). Все они лежат в одной плоскости с этим тригонально атомом. Все углы связей тригонального атома с этими атомами близки к 120 °.

        В карбонильной группе есть очень большая разница в электроотрицательности между атомами углерода и кислорода. Это отражается в большом дипольном моменте уксусного альдегида. Электроны связи распределены неравномерно, поэтому молекула этаналя сильно полярная. Для качественного описания природы связи в карбонильной группе обычно используют представление о двойной связь, содержащая σ- и π-компоненты с двумя парами несвязанных (n) электронов у атома кислорода. Принято, что тригонально атом углерода находится в состоянии sp 2 гибридизация и образует σ-связь с водородом и другим атомом углерода.

        Физические свойства

        Этаналь, как и все альдегиды, не способен образовывать водородных связей, поэтому его температура кипения составляет лишь 20,16 ° C. При обычных условиях — это бесцветная жидкость с резким удушливым запахом, при разбавлении водой приобретает фруктового запаха. Хорошо растворяется в воде, спирте, эфире.

        Получение

        Процесс Вакера

        Главным промышленным способом получения уксусного альдегида является процесс Вакера. Он заключается в окислении этилена, который получают при крекинга углеводородов. Этот способ имеет гораздо большее значение, чем окисления, каталитическая дегидрогенизация этанола или гидратация ацетилена. В процессе Вакера этилен окисляют в водном растворе, хлорид меди (II) и хлорид палладия (II). В одностадийном варианте катализатор регенерируют кислородом в условиях непрерывного синтеза, в двухстадийном варианте катализатор регенерируют воздухом в отдельном реакторе. Реакция катализируется палладием.

        С дигалогенопохидних

        В результате гидролиза дигалогенопохидних с двумя атомами галогена при одном атоме углерода образуются двухатомные спирты, содержащие две гидроксильные группы также при одном атоме углерода. Такие диолы крайне неустойчивы и легко отщепляют молекулу воды. Таким образом с 1,1-дихлорэтана можно получить этаналь.

        С этанола

        При окислении этанола кислородом воздуха при температуре 300-500 ° С при наличии катализаторов, а также такими окислителями, как хромовая смесь, оксид хрома (VI), марганца (IV) оксид и др., Образуется уксусный альдегид.

        Данный процесс довольно сложно остановить на стадии образования альдегида и он может длиться до получения уксусной кислоты.

        С этанола этаналь можно получить и дегидрогенизации. Для этого испарения спирта необходимо пропустить над катализаторами (цинк, медь) при высоких температурах.

        С ацетилена

        Этаналь можно получить гидратацией ацетилена. В качестве катализаторов в процессе применяются соли ртути.

        Химические свойства

        Нуклеофильное присоединение

        Взаимодействие с цианидами металлов

        При взаимодействии этаналя с солями цианидной кислоты образуются гидроксинитрилы. Сама синильная кислота малодиссоциированных. Поэтому реакцию проводят в щелочной среде, где образуется цианид-ион, который является активной нуклеофильного частью.

        Реакция является весьма важной в органической химии. Во-первых, она позволяет продлить карбоновый цепь исходного соединения на один атом углерода. Во-вторых, продукт реакции — 2-гидроксипропанонитрил служит исходным продуктом для синтеза соответствующей гидроксикарбоновои кислоты.

        Взаимодействие с водой

        Уксусный альдегид вступает в обратимую реакцию гидратации, образуя соответствующий гидрат.

        Этаналь в водном растворе гидратированный на 51%.

        Взаимодействие со спиртами

        Спирты, как и вода, обратимо присоединяются к этаналя с образованием пивацеталей. В спиртовых растворах пивацетали находятся в равновесии с уксусным альдегидом. Так, в этанольная растворе этаналя содержится около 30% пивацеталю (1-етоксиетанолу) (в расчете на альдегид).

        При взаимодействий со второй молекулой спирта в условиях кислотного катализа пивацетали превращаются в ацетали.

        Взаимодействие с аминами

        На первой стадии реакции происходит нуклеофильное присоединение амина по двойной связи карбонильной группы. Первичным продуктом присоединения является биполярный ион, который стабилизируется в результате внутримолекулярного переноса протона от атома азота к атому кислорода, превращаясь в аминоспирт. Однако реакция не останавливается на этой стадии, ведь соединения, содержащие две электроноакцепторные группы при одном атоме углерода, неустойчивы и стремятся к стабилизации путем отщепления одной из групп в виде нейтральной термодинамически стабильной молекулы. В данном случае происходит отщепление молекулы воды от молекулы аминоспирта и образуется имин (основа Шиффа).

        Подобно взаимодействия с первичными аминами проходят реакции этаналя с такими производными аммиака, как гидроксиламин, гидразин, фенилгидразин C 6 H 5 NHNH 2 и др. Образующиеся производные уксусного альдегида — оксимы, гидразоны, фенилгидразоны — обычно устойчивы кристаллическими веществами с четкими температурами плавления.

        Восстановление

        Этаналь восстанавливается до этанола. Одним из эффективных восстановителей является алюмогидрида лития LiAlH 4. Он играет роль поставщика гидрид-ионов H -, которые являются нуклеофильными частицами и присоединяются по двойной связи. Для преобразования образованного сначала алкоксид-иона в спирт после окончания восстановления в реакционную среду добавляют воду.

        В промышленности этаналь превращают в этанол в результате каталитической гидрогенизации. Реакцию проводят, пропуская пары альдегида в смеси с водородом над никелевым или палладиевого катализатора.

        Альдольно-кротоновая конденсация

        В результате взаимодействия в щелочной среде двух молекул этаналя образуется 3-гидроксибутаналь.

        Поскольку продукт реакции содержит в молекуле гидроксильную и альдегидную группы, его назвали альдоль (от слов альдегид и алкоголь), а сама реакция конденсации оксосоединений в щелочной среде получила название альдольной конденсации. Эта реакция имеет большое значение в органическом синтезе, поскольку позволяет синтезировать различные гидроксикарбонильни соединения. Альдольно конденсацию можно проводить в смешанном варианте, с использованием различных карбонильных соединений.

        Читайте также:  Кальян вреден или полезен

        Часто альдольная конденсация сопровождается отщеплением воды и образованием α, β-ненасыщенного карбонильной соединения. В таком случае реакция называется кротонов конденсацией. Такое происходит часто, когда реакцию проводят при повышенной температуре.

        Реакции окисления

        Реакция «серебряного зеркала»

        Одной из качественных реакций для определения альдегидной группы реакция «серебряного зеркала» — окисление альдегида аргентум (I) оксидом. Оксид серебра всегда готовят непосредственно перед опытом, добавляя к раствору аргентум (I) нитрата раствор гидроксида щелочного металла. В растворе аммиака аргентум (I) оксид образует комплексное соединение под названием гидроксид диаминсрибла или реактив Толленса. При действии этого соединения на этаналь происходит окислительно-восстановительная реакция. Уксусный альдегид окисляется до уксусной кислоты, а катион Аргентума восстанавливается в металлическое серебро, которое дает блестящий налет на стенках пробирки — «серебряное зеркало».

        Окисления гидроксидом меди

        Еще одна качественная реакция на альдегиды заключается в их окислении гидроксида меди (II). При окислении альдегида меди (II) гидроксид, что имеет светло-голубой цвет, восстанавливается до гидроксид меди (I) желтого цвета. Этот процесс проходит при комнатной температуре. Если подогреть исследовательский раствор, то меди (I) гидроксид желтого цвета превращается в оксид меди (I) красного цвета.

        Галогенирования

        Наличие в молекуле этаналя електроноакцепторний оксогруппы является причиной повышенной реакционной способности атомов водорода, находящихся у атомов углерода в α-положении. Они способны замещаться на атомы галогена.

        Полимеризация

        Уксусный альдегид подобно формальдегида способен полимеризоваться при наличии следов кислоты. При полимеризации трех молекул этаналя образуется паральдегид — жидкость с температурой кипения 124,5 ° С. При нагревании при наличии кислот он деполимеризуется с образованием исходного уксусного альдегида.

        Взаимодействие с аммиаком

        Уксусный альдегид реагирует с безводным аммиаком в эфире, давая тригидрат гексагидротриазину, который после дегидратации над серной кислотой образует 2,4,6-триметилгексагидро-1,3,5-триазин, азотный аналог «паральдегида».

        В промышленности этаналь окисляют до уксусной кислоты и пероцтовои кислоты воздухом. Для получения уксусной кислоты окисления обычно проводят в испарениях и при повышенной температуре. Для получения пероцтовои кислоты реакцию проводят при 0 ° С или при более низкой температуре в растворителе. Как промежуточный продукт образуется 1-гидроксиетилперацетат, который разлагается с образованием пероцтовои кислоты и уксусного альдегида. Последний возвращают в цикл.

        Применение

        Этаналь применяют в промышленности для производства ацетатов целлюлозы, уксусной и пероцтовои кислот, уксусного ангидрида, этилацетата, глиоксаля, 2-етилгексанолу, алкиламинов, бутанола, пентаэритрита, алкилпиридинив, 1,3-бутиленгликоль, хлорала. Также используется как восстановитель в производстве зеркал.

        Мировое производство в 1982 году составило 2 млн т / год (без СССР).

        Физиологическое действие

        Животные

        Для белых мышей при 2-часовой экспозиции ЛК 50 = 21,8 мг / л, при введении в желудок ЛД 50 = 1232 мг / кг. Основные симптомы отравления — расстройство дыхания, раздражение слизистых оболочек. Вдыхание этаналя концентрацией 0,5 мг / л в течение семи часов вызывает заметное раздражение слизистых оболочек у кошек. При 2 мг / л — сильное раздражение, а 20 мг / л через 1-2 часа вызывает смерть. Вскрытие показывает отек и воспаление легких. Крысы и морские свинки переносили введение дозы 100 мг / кг в течение 6 месяцев. При этом отмечалось нарушение условнорефлекторной деятельности, повышение артериального давления. Те же изменения вызвала доза 10 мг / кг через 2-3 месяца.

        Человек

        Порог восприятия запаха составляет 0,0001 мг / л, а уже при 0,004 мг / л ощущается резкий запах. Кроме легкого раздражения слизистых оболочек от 0,1-0,4 мг / л при хроническом воздействии этаналя других патологических изменений не отмечалось. При больших концентрациях наблюдается учащение пульса, ночное потоотделение. При очень больших — удушье, резкий кашель, головные боли, бронхит, воспаление легких. Возможно привыкание к небольших концентраций.

        Попадание в организм и преобразования

        Задерживается в дыхательных путях кролика в среднем на 60%, около 25% абсорбируется в верхних дыхательных путях. В организме окисляется до уксусной кислоты, которая вступает в нормальный обмен и сгорает в и. Скорость метаболизма большая и кроликов составляет 7-10 мг / мин .. Промежуточным продуктом окисления является ацетон.

        Образование ацетальдегида при взаимодействии этилена с водным раствором хлористого палладия наблюдал Филлипс ещё в 1894 г. Образующийся в безводной среде комплекс этилена с хлористым палладием был описан Карашем в 1938 г. При взаимодействии палладиевого комплекса с водой происходит окисление активированного олефина с образованием ацетальдегида, выделением палладия и хлорида водорода. [6, с.302]

        Непрерывный процесс получения ацетальдегида, в котором восстановление до металлического Pd совмещается с непрерывным его окислением кислородом воздуха, был предложен в 1959 г. Я. К. Сыркиным, И.И. Моисеевыми, М.Н. Варгафтиком. Этот процесс может протекать в одну стадию (в одном аппарате происходит как окисление этилена, так и выделяющегося палладия) или в две стадии: окисление (карбонилирование) олефина через стадию образования активного комплекса и восстановление Pd протекает в одном аппарате, а окисление металлического Pd — в другом:

        CH2=CH2 +PdCl2 + H2O CH3CHO + Pd + 2HCl

        Pd + 2HCl + 0,5O2 PdCl2 + H2O

        В первом (одностадийном) варианте условия процесса и соотношение реагентов должны быть такими, чтобы скорости окисления этилена и Pd были одинаковыми (или последняя выше). Вместе с тем скорость второй реакции значительно ниже, чем первой, поэтому активность катализатора в таком варианте процесса быстро падает.

        Для повышения скорости окисления Pd были предложены промоторы (это главное достижение в промышленной реализации данного процесса) — соли меди или железа в среде хлороводородной кислоты, играющие роль переносчиков кислорода, окисляя палладий, медь или железо, восстанавливаются по реакциям:

        Pd + 2HCl + 0,5O2 PdCl2 + H2O

        Cu2Cl2 + 2HCl + 0,5O2 2CuCl2 + H2O

        или Pd + 2FeCl3 PdCl2 + 2FeCl2

        2FeCl2 + 2HCl + 0,5O2 2FeCl3 + H2O

        Соли Cu2Cl2 и FeCl2 легко окисляются кислородом воздуха, при этом металл переходит в свое исходное высшее валентное состояние. Следовательно, совмещение этих реакций создает предпосылки для осуществления в промышленном масштабе получения ацетальдегида прямым окислением этилена молекулярным кислородом.[3, с. 455]

        Читайте также:  Сенатор сигареты цена за пачку в россии

        При этом, если процесс осуществляется в одном аппарате, то во избежание разбавления непрореагировавшего этилена окисление необходимо проводить чистым кислородом. Избыток же этилена вводится как с целью быстрого вывода ацетальдегида из зоны реакции, так и для создания соотношения компонентов за пределами взрывоопасных концентраций. В случае двухстадийного процесса (когда реакции получения ацетальдегида и окисления Pd проходят в одном аппарате, а окисление Сu2С12 или FeCl2 — в другом) можно использовать кислород воздуха, так как подача этилена и воздуха разделена.

        Суммарная реакция образования ацетальдегида сопровождается выделением значительного количества тепла:

        Скорость отдельных реакций и, соответственно, скорость образования побочных продуктов зависит от условий проведения процесса. На скорость суммарной реакции, селективность процесса и выход ацетальдегида существенно влияет состав катализаторного раствора (содержание PdCl2, CuCl2 и FeCl2), кислотность среды, давление, температура, соотношение этилена и окисляющего агента.

        Соотношение между общим суммарным содержанием металлов окислительно-восстановительной системы (Сu, Fe или смеси) и Pd должно быть не меньше 15:1. На практике используется соотношение (25 :1)-(50:1). Такой избыток меди или железа обусловливается высокой стоимостью Pd.

        Конверсия олефина зависит также от мольного соотношения в катализаторе меди (железа) и галогена; оно поддерживается в узком диапазоне (1:1,4-1:1,8). Поэтому добавляемый в ходе процесса галоген в виде хлорида или этилхлорида должен дозироваться достаточно точно, так как при соотношении меньшем, чем 1:1, снижается конверсия этилена, а при соотношении 1;2 и выше реакция замедляется. В этом случае добавляют ацетат меди [3, с. 457].

        Процесс следует проводить в кислой (рН=0,8-3,0) или нейтральной среде (рН= 6,0-7,5), так как при повышении рН из катализаторного раствора будет выпадать хлорид меди (I), что приводит к снижению выхода ацетальдегида и забивки отверстий газораспределительного устройства. Растворимость хлорида Сu(I) можно повысить добавлением в катализаторный раствор муравьиной, уксусной, а лучше — трихлоруксусной кислоты. Однако их следует добавлять в незначительном количестве (особенно уксусную кислоту), так как карбоновые кислоты образуют с Сu малоактивные соли. Кроме того, уксусная кислота растворяет продукты синтеза, что приводит к образованию побочных хлорированных продуктов.

        Растворимость солей в воде ограничена, поэтому образуются разбавленные растворы катализатора, что приводит к его низкой удельной производительности. В связи с этим выгоднее работать с катализатором, находящимся в виде суспензии в воде или в разбавленной уксусной кислоте (шламовый катализатор). Применение шламового катализатора позволяет сочетать высокую концентрацию катализатора с хорошим отводом тепла; образовывать стабильную пену, что в свою очередь приводит к хорошему диспергированию газа.

        В качестве сырья можно использовать как концентрированный этилен, так и этан-этиленовую фракцию. Наличие малых количеств водорода, оксида и диоксида углерода, предельных углеводородов не мешает протеканию процесса. Содержание непредельных углеводородов и серы должно быть незначительным (ацетилена

        ацетальдегид, ацетальдегид + метанол

        Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

        Ацетальдеги́д (у́ксусный альдегид, этана́ль, метилформальдегид) — органическое соединение класса альдегидов с химической формулой CH3-CHO. Это один из наиболее важных альдегидов, широко встречающийся в природе и производящийся в больших количествах индустриально. Ацетальдегид встречается в кофе, в спелых фруктах, хлебе, и синтезируется растениями как результат их метаболизма. Также производится окислением этанола.

        Содержание

        • 1 Физические свойства
        • 2 Получение
        • 3 Реакционная способность
        • 3.1 Реакция конденсации
        • 3.2 Производные ацеталя
      • 4 Применение
      • 5 Биохимия
        • 5.1 Табачная зависимость
        • 5.2 Болезнь Альцгеймера
        • 5.3 Проблема алкоголя
        • 5.4 Канцероген
        • 5.5 Безопасность
          • 5.5.1 Санитарно-гигиенические рекомендации
          • 5.5.2 Применение СИЗОД
          • 5.6 Врожденная непереносимость алкоголя
          • 6 Примечания
          • Физические свойства

            Вещество представляет собой бесцветную жидкость с резким запахом, хорошо растворяется в воде, спирте, эфире. Из-за очень низкой температуры кипения (20,2 °C) хранят и перевозят ацетальдегид в виде тримера — паральдегида, из которого он может быть получен нагреванием с минеральными кислотами (обычно серной).

            Получение

            В 2003 глобальное производство было около миллиона тонн в год. Основной способ получения — окисление этилена (процесс Вакера):

            В качестве окислителя в процессе Вакера используется хлорид палладия, регенерирующийся окислением хлоридом меди в присутствии кислорода воздуха:

            Также получают уксусный альдегид гидратацией ацетилена в присутствии солей ртути (реакция Кучерова), с образованием енола, который изомеризуется в альдегид:

            Этот метод раньше доминировал до появления процесса Вакера окислением или дегидрированием этилового спирта, на медном или серебряном катализаторе.

            Реакционная способность

            По своим химическим свойствам уксусный альдегид является типичным алифатическим альдегидом, и для него характерны реакции этого класса соединений. Его реакционная способность определяется двумя факторами: активностью карбонила альдегидной группы и подвижностью атомов водорода метильной группы, вследствие индуктивного эффекта карбонила.

            Подобно другим карбонильным соединениям с атомами водорода у α-углеродного атома, ацетальдегид таутомеризируется, образуя енол — виниловый спирт, равновесие почти полностью смещено в сторону альдегидной формы (константа равновесия — только 6·10−5 при комнатной температуре):

            Реакция конденсации

            Из-за небольших размеров молекулы и доступности в виде безводного мономера (в отличие от формальдегида) ацетальдегид является широко распространённым электрофильным агентом в органическом синтезе. Что касается реакций конденсации, альдегид прохирален. Он используется, в основном, как источник синтона «CH3C+H(OH)» в альдольной и соответствующих реакциях конденсации. Реактив Гриньяра и литий-органические соединения реагируют с MeCHO, образуя производные гидроксиэтила. В одной из реакций конденсации, три эквивалента формальдегида присоединяются, а один восстанавливает образующийся альдегид, образуя из MeCHO пентаэритрит (C(CH2OH)4.)

            В реакции Штрекера ацетальдегид конденсируется с цианидом и аммиаком, образуя после гидролиза аминокислоту — аланин. Ацетальдегид способен конденсироваться с аминами образуя имины, так как конденсация циклогексиламина даёт N-этилиденциклогексиламин. Эти имины могут быть использованы для прямой последующей реакции, таких, как альдольная конденсация.

            Ацетальдегид также — важный строительный блок для синтезов гетероциклических соединений. Выдающийся пример — конверсия под действием аммиака до 5-этил-2-метилпиридина («альдегид-коллидин»)

            Реакция альдольной конденсации обусловлена подвижностью водорода в альфа-положении в радикале и осуществляется в присутствии разбавленных щелочей. Ее можно рассматривать как реакцию нуклеофильного присоединения одной молекулы альдегида к другой:

            Читайте также:  Курение и кормление грудничка комаровский

            CH3-CH2-CH=O + CH3-CH2-CH=O → CH3-CH2-CH(OH)-CH(CH3)-CH=O +(OH)- Продукт- 2-метил-3-гидроксипентаналь.

            Производные ацеталя

            Три молекулы ацетальдегида конденсируются, образуя «паральдегид» — циклический тример, содержащий одиночные С-О связи. Конденсация четырёх молекул даёт циклическое соединение, называемое метальдегид.

            Ацетальдегид образует стабильные ацетали при реакции с этанолом в условиях дегидратации. Продукт CH3CH(OCH2CH3)2 называется «ацеталь», хотя термин используется для описания более широкой группы соединений с общей формулой RCH(OR’)2.

            Применение

            Применяют уксусный альдегид для получения уксусной кислоты, бутадиена, некоторых органических веществ, альдегидных полимеров.

            Традиционно ацетальдегид, в основном, использовался в качестве прекурсора к уксусной кислоте. Такое применение было отвергнуто ввиду того, что уксусная кислота более эффективно производится из метанола с помощью процессов Монсанто и Катива. В терминах реакции конденсации, ацетальдегид — важный прекурсор к пиридиновым производным, пентаэритролу и кротональдегиду. Мочевина и ацетальдегид конденсируются, образуя смолы. Уксусный ангидрид реагирует с ацетальдегидом, давая этилидендиацетат, из которого получают винилацетат — мономер поливинилацетата.

            Биохимия

            В печени энзим алкогольдегидрогеназа окисляет этанол в ацетальдегид, который затем окисляется в безопасную уксусную кислоту посредством ацетальдегиддегидрогеназы. Эти две реакции окисления связаны с восстановлением NAD+ в NADH. В мозгу алкогольдегидрогеназа не играет особой роли в окислении этанола в ацетальдегид, это делает энзим каталаза. Конечные шаги алкогольной ферментации в бактериях, растениях и дрожжах включают конверсию пирувата в ацетальдегид под действием пируват декарбоксилаза, после чего — конверсию ацетальдегида в этанол. Последняя реакция снова катализируется алкогольдегидрогеназой, но уже в обратном направлении.

            Табачная зависимость

            Ацетальдегид — значительная часть дыма табака. Была продемонстрирована синергическая связь с никотином, увеличивающая появление зависимости, особенно у молодёжи.

            Болезнь Альцгеймера

            Люди, у которых отсутствует генетический фактор конверсии ацетальдегида в уксусную кислоту, могут иметь большой риск предрасположенности к болезни Альцгеймера. «Эти результаты указывают, что отсутствие ALDH2 — это фактор риска для поздно возникающей болезни Альцгеймера.»

            Проблема алкоголя

            Ацетальдегид, полученный из поглощённого этанола, связывает ферменты, образуя аддукты, связанные с заболеваниями органов. Лекарство дисульфирам (Antabuse) предотвращает окисление ацетальдегида до уксусной кислоты. Это даёт неприятные ощущения при принятии алкоголя. Antabuse используется в случае, когда алкоголик сам хочет излечиться.

            Канцероген

            Ацетальдегид предположительно является канцерогеном для человека. «Существует достаточно доказательств канцерогенности ацетальдегида (основного метаболита этанола) в экспериментах на животных», кроме того, ацетальдегид повреждает ДНК и вызывает несоразмерное с общей массой тела развитие мускулов, связанное с нарушением белкового равновесия организма. В результате исследования 818 алкоголиков ученые пришли к выводу, что у тех пациентов, которые подвергались действию ацетальдегида в большей степени, присутствует дефект в гене фермента алкогольдегидрогеназы. Поэтому такие пациенты подвержены большему риску развития рака верхней части ЖКТ и печени.

            Безопасность

            Ацетальдегид токсичен при действии на кожу, ирритант и, возможно, канцероген. Он также является загрязнителем воздуха при горении, курении, в автомобильных выхлопах. Кроме того, этаналь образуется при термической обработке полимеров и пластиков.

            При длительном контакте с воздухом могут образоваться перекиси, и произойти взрыв, который может разрушить ёмкость

            Санитарно-гигиенические рекомендации

            • Кожа: Использование адекватной защитной одежды для предотвращения контакта с кожей.
            • Глаза: Использование адекватных СИЗ глаз
            • Переодевание: При намокании (из-за пожароопасности)
            • Рекомендации: Установить фонтанчики для промывки глаз, оборудовать места для быстрого переодевания

            Применение СИЗОД

            При превышении ПДК следует использовать изолирующие СИЗОД с постоянным избыточным давлением под полнолицевой маской (подача воздуха по потребности под давлением и т.п.). При использовании шланговых СИЗОД они должны быть укомплектованы вспомогательным автономным дыхательным аппаратом с постоянным избыточным давлением под маской и сроком службы, достаточным для покидания опасного места при нарушении подачи воздуха по шлангу.

            Для эвакуации могут использоваться фильтрующие СИЗОД с полнолицевой маской и фильтрами для защиты от паров органических соединений, или изолирующий самоспасатель.

            Врожденная непереносимость алкоголя

            Одним из механизмов врожденной непереносимости алкоголя является накопление ацетальдегида.

            Примечания

            1. 12 en:Wacker process
            2. March, J. «Organic Chemistry: Reactions, Mechanisms, and Structures» J. Wiley, New York: 1992. ISBN 0-471-58148-8.
            3. Sowin, T. J.; Melcher, L. M. «Acetaldehyde» in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI:10.1002/047084289
            4. en:Strecker amino ac >
              Альдегиды Предельные Формальдегид · Ацетальдегид · Хлораль · Пропаналь · Бутаналь · Нонаналь · Деканаль · Додеканаль · Глиоксаль · Малондиальдегид Непредельные Акролеин · Кротоновый альдегид · Мирценаль · Цитраль · Цитронеллаль Ароматические Бензальдегид · Салициловый альдегид · Коричный альдегид · Анисовый альдегид · Ванилин · Этилванилин · Гелиотропин Гетероциклические Фурфурол · Пиридоксаль

            ацетальдегид, ацетальдегид + метанол, ацетальдегид формула, ацетальдегиддегидрогеназа, ацетальдегидрогеназа

            Ацетальдегид Информацию О

            Как из этилена получить ацетальдегид

            Ацетальдегид Комментарии

            Как из этилена получить ацетальдегид

            Ацетальдегид beatiful post thanks!

            Ацетальдегид
            Ацетальдегид
            Ацетальдегид Вы просматриваете субъект

            There are excerpts from wikipedia on this article and video

            Случайные Статьи

            Как из этилена получить ацетальдегид

            Громов, Евгений Иванович

            Как из этилена получить ацетальдегид

            Как из этилена получить ацетальдегид

            Пайдейя

            Как из этилена получить ацетальдегид

            Каделл ап Грифид

            Как из этилена получить ацетальдегид Как из этилена получить ацетальдегид

            поисковая система

            Наш сайт имеет систему в функции поисковой системы. Выше: "что вы искали?"вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте. На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках.
            Очень скоро в систему будут добавлены новые языки. Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.