Органическая химия. Видеоопыты
Получение этилена из этилового спирта
Получаем этилен нагреванием смеси этилового спирта с концентрированной серной кислотой. Этилен сгорает на воздухе с образованием углекислого газа и воды.
Поддержка ресурса
Все ресурсы Коллекции предназначены только для некоммерческого использования в системе образования Российской Федерации. Свидетельство о регистрации средства массовой информации Эл ФС 77 — 47492 от 25.11.2011
При использовании материалов сайта ссылка на Единую коллекцию ЦОР обязательна.
Автоматизированное извлечение информации сайта запрещено.
Формула – С2Н4 (СН2 = СН2). Молекулярная масса (масса одного моль) – 28 г/моль.
Углеводородный радикал, образованный от этилена называется винил (-CH = CH2). Атомы углерода в молекуле этилена находятся в sp 2 -гибридизации.
Химические свойства этилена
Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.
Галогенирование (электрофильное присоединение) — взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:
Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:
Гидрогалогенирование — взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:
Гидратация — взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:
Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):
Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,
В ходе реакций окисления этилена возможно образование различных продуктов, причем состав определяется условиями проведения окисления. Так, при окислении этилена в мягких условиях (окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомного спирта — этиленгликоля:
При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:
Окисление этилена кислородом при 200С в присутствии CuCl2 и PdCl2 приводит к образованию ацетальдегида:
При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:
Этилен вступает в реакцию полимеризации. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):
Физические свойства этилена
Этилен – бесцветный газ со слабым запахом, малорастворимый в воде, растворим в спирте, хорошо растворим в диэтиловом эфире. При смешении с воздухом образует взрывоопасную смесь
Получение этилена
Основные способы получения этилена:
— дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей
— дегалогенирование дигалогенпроизводных алканов под действием активных металлов
— дегидратация этилена при его нагревании с серной кислотой (t >150 C) или пропускании его паров над катализатором
— дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)
Применение этилена
Этилен является одним из важнейших соединений, производимых в огромных промышленных масштабах. Его используют в качестве сырья для производства целого спектра различных органических соединений (этанол, этиленгликоль, уксусная кислота и т.д.). Этилен служит исходным сырьем для производства полимеров (полиэтилен и др.). Его применяют в качестве вещества, ускоряющего рост и созревание овощей и фруктов.
Примеры решения задач
Задание | Осуществите ряд превращений этан → этен (этилен) → этанол → этен → хлорэтан → бутан. |
Решение | Для получения этена (этилена) из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании: |
Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной):
Для получения этена из этанола используют реакцию дегидротации:
Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования:
Для получения бутана из хлорэтана используют реакцию Вюрца:
Задание | Вычислите сколько литров и граммов этилена можно получить из 160 мл этанола, плотность которого равна 0,8 г/мл. |
Решение | Этилен из этанола можно получить по реакции дегидратации, условием протекания которой является присутствие минеральных кислот (серной, фосфорной). Запишем уравнение реакции получения этилена из этанола: |
Найдем массу этанола:
Молярная масса (молекулярная масса одного моль) этанола, вычисленная с помощью таблицы химических элементов Д.И. Менделеева – 46 г/моль. Найдем количество вещества этанола:
Могласно уравнению реакции v(C2H5OH) : v(C2H4) = 1:1, следовательно, v(C2H4) = v(C2H5OH) = 2,78 моль. Молярная масса (молекулярная масса одного моль) этилена, вычисленная с помощью таблицы химических элементов Д.И. Менделеева – 28 г/моль. Найдем массу и объем этилена:
ЦЕЛЬ РАБОТЫ: изучить способы получения и свойства непредельных углеводородов на примере этилена (этена).
провести качественные реакции на непредельные углеводороды и реакцию горения этилена;
получить и выделить из реакционной смеси 1,2-дибромэтан.
К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены). Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов — алканов.
Алкены (этиленовые углеводороды, олефины) – непредельные углеводороды, в молекулах которых между атомами углерода имеется одна двойная связь. Общая формула алкенов CnH2n.
Химические свойства этилена (этена) и его гомологов в основном определяются наличием в их молекулах двойной связи. Для них характерны реакции присоединения, окисления и полимеризации. Большинство реакций протекают по механизму электрофильного присоединения (реакции, протекающие под действием электрофилов – частиц, имеющих недостаток электронной плотности, например незаполненную орбиталь).
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования – металлов – платины, палладия, никеля:
2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (ССl4) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образованию дигалогеноалканов:
3. Гидрогалогенирование (присоединение галогеноводорода).
Эта реакция подчиняется правилу Марковникова: при присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.
4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:
Эта реакция присоединения протекает по свободнорадикальному механизму.
6.Окисление. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:
В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь.
Этилен и его гомологи легко окисляются, например кислородом перманганата калия; при этом раствор последнего обесцвечивается:
Промышленные способы синтеза алкенов основаны на реакциях дегидрирования соответствующих алканов. Так этилен на производстве получают из природного газа и при процессах крекинга и пиролиза нефти.
Лабораторный способ получения этилена – дегидратация этилового спирта под действием серной или фосфорной кислот при нагревании:
ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, РЕАКТИВЫ:
для опыта №1 — металлический штатив с лапкой, три пробирки, газоотводная трубка с пробкой, горелка (спиртовка), спички; оксид алюминия (Al2O3) или маленький кусочек пемзы, концентрированная серная кислота, этиловый спирт, бромная вода Br2 (на 50 мл воды 2 капли брома), раствор перманганата калия KMnO4 (0,005%, подкисленный);
для опыта №2 — прибор для получения этилена, лабораторный штатив, спиртовка (горелка), делительная воронка, штатив с пробирками, стакан с подсоленной холодной водой, промытый и прокаленный речной песок, вата, спички; этанол, серная кислота (ρ = 1,84 г/см 3 ), насыщенный раствор брома в этаноле С2Н5ОН, бромид калия кристаллический, раствор щелочи (10%-ный).
Опыт №1. Получение и свойства этилена (этена)
В пробирку (рис. 6) поместите 2 мл концентрированной серной кислоты, 1 мл этилового спирта (лучше, если используется смесь, приготовленная учителем заранее) и несколько крупинок оксида алюминия (А12О3) или маленький кусочек пемзы для равномерного кипения смеси при нагревании, чтобы избежать толчков жидкости при кипении.
Закройте пробирку пробкой с газоотводной трубкой и нагрейте пробирку в пламени горелки. Выделяющийся газ пропустите в отдельные пробирки с бромной водой и раствором перманганата калия. Убедитесь в том, что бромная вода и раствор перманганата калия быстро обесцвечиваются. Продолжая нагревать пробирку, поверните газоотводную трубку концом вверх и подожгите газ у конца газоотводной трубки. Отметьте цвет пламени. (Этен горит светящимся пламенем.)
Рис. 6. Получение этена
Опыт №2. Получение и выделение дибромэтана из реакционной смеси
Соберите прибор для получения этилена (рис. 7). Приготовьте реакционную смесь: к 1,5 мл этанола прилейте 4 мл серной кислоты и в полученную смесь присыпьте немного песка (для чего?).
Рис. 7. Прибор для получения этилена и 1,2-дибромэтана
Примечание. Для экономии времени смесь этанола с серной кислотой можно приготовить до начала работы.
В предыдущем опыте при обесцвечивании этиленом бромной воды продуктом реакции был 1,2-дибромэтан, но из-за малой концентрации брома в воде его получилось очень мало, для получения его в большем количестве необходимо использовать раствор брома в этаноле, в котором он растворяется значительно лучше, чем в воде.
Прилейте в сухую пробирку около 2 мл спиртового раствора брома. Добавьте в этот раствор несколько кристаллов бромида или хлорида калия, выполняющих роль катализатора.
Получите этилен и пропустите его через спиртовой раствор брома до полного обесцвечивания последнего.
Примечание. Непрореагировавшие пары брома нейтрализуют 10%-ным раствором щелочи.
По окончании реакции в растворе брома в пробирке образуется 1,2-дибромэтан, который становится хорошо видимым, если его спиртовой раствор перелить в пробирку, на 2/3 наполненную подсоленной холодной водой. Продукт реакции оседает на дне в виде маслянистых капель. (Плотность 1,2-дибромэтана 2,18 г/см 3 , температура кипения 131 °С.)
Выделите полученный 1,2-дибромэтан при помощи делительной воронки и сдайте его учителю или лаборанту.
РЕКОМЕНДАЦИИ ПО ПЛАНИРОВАНИЮ И ПРОВЕДЕНИЮ ЭКСПЕРИМЕНТА
Опыты проводить под тягой! Необходимо соблюдать осторожность при работе с бромной водой, т.к. это вещество относится к ядовитым и раздражающим веществам. Необходимо помнить, что получаемый этен (этилен) является чрезвычайно легко воспламеняющимся веществом. Соблюдать осторожность при работе с концентрированной серной кислотой.
1. Чем отличаются реакции горения этена и этана?
2. Приведите примеры реакций, с помощью которых можно различить предельные и непредельные углеводороды.
2. Как получают этен в лаборатории и промышленности? Напишите уравнения реакции.
3. Почему этен обесцвечивает растворы бромной воды и перманганата калия? Напишите уравнения соответствующих реакций.
4. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б, В:
а)
б)
5. Решите задачу: смесь этана и этена объемом 5,6 л (н.у.) обесцвечивает раствор бромной воды массой 1000 г с массовой долей брома 3,2%. Определите массовую долю (в процентах) этена в исходной смеси. Ответ: 79%.